

Photogrammetry 2B Lecture 1: Introduction

Dr. Eng. Hassan Mohamed Hassan <u>Hassan.hussein@feng.bu.edu.eg</u> Geomatics Department

What you learn from this course

- 1. Be familiar with various types of Photogrammetric Orientation.
- 2. To know the theory of photogrammetry, photographic methods and other field considerations.
- 3. The Relationships of Photogrammetry with Lidar and Terrestrial laser scanning systems.
- 4. Learn the types of Aerial triangulation.
- 5. Drone systems.
- 6. To demonstrate how to use various photogrammetry software.
- 7. How to plane and ortho rectification of imagery.

Course Contents :

	Week	Topics
	1	Revision + coplanarity condition
	2	Linearization of coplanarity condition
	3	Analytical relative orientation
	4	Ground coordinates of aerial photogrammetry
	5	Analytical absolute orientation
	6	Aerial triangulation
	7	Analytical aerial triangulation
	8	Midterm Exam
	9	Orthophoto Generation and Digital Elevation Models
	10	Laser scanning systems
	11	Introduction to Lidar
	12	Introduction to Drone Systems

Weighting of Assessments:

Assessment	Weight
Mid-term Examination	10%
Semester work	10%
Oral Examination	20%
Final Examination	60%
Total	100%

- Definition: is the condition that the two exposure stations of a stereopair, any object point, and its corresponding image points on the two photos all lie in a common plane.
- In the figure, for example, points L1, L2, a1, a2, and A all lie in the same plane.

X

- When relative orientation is achieved, the vector R1 from L1 to A and the vector R2 from L2 to A, these two vectors together with air base vector, b, will be coplanar.
- > Hence, their scalar triple product is zero. That is:

$$F_1 = \vec{b} - \vec{R}_1 + \vec{R}_2 = 0$$

> Where:

$$\vec{b} = \begin{bmatrix} b_{X} \\ b_{Y} \\ b_{Z} \end{bmatrix} = \begin{bmatrix} X_{02} - X_{01} \\ Y_{02} - Y_{01} \\ Z_{02} - Z_{01} \end{bmatrix}$$
$$\vec{R}_{1i} = \begin{bmatrix} X_{1i} \\ Y_{1i} \\ Z_{ii} \end{bmatrix} = K_{1}M_{1}^{T} \begin{bmatrix} x_{a1} - x_{0} \\ y_{a1} - y_{0} \\ -f \end{bmatrix}$$
$$\vec{R}_{2i} = \begin{bmatrix} X_{2i} \\ Y_{2i} \\ Z_{2i} \end{bmatrix} = K_{2}M_{2}^{T} \begin{bmatrix} x_{a2} - x_{0} \\ y_{a2} - y_{0} \\ -f \end{bmatrix}$$

- Where K₁ and K₂ are scale factors for both left and right photos, respectively.
- \succ b_x, b_y, b_z are Airbase components.
- \succ M₁ Rotation matrix of the left photo.
- \succ M₂ Rotation matrix of the right photo.
- > X_{a1} , Y_{a1} coordinates of image point a_1 in left photo.
- > X_{a2} , Y_{a2} coordinates of image point a_2 in right photo.
- > Xo, Yo coordinates of principle point.
- \succ F CFL of the used camera.

Equation (1) may be written in determinant form as,

$$F_{1} = \begin{bmatrix} b_{X} & b_{Y} & b_{Z} \\ X_{1i} & Y_{1i} & Z_{1i} \\ X_{2i} & Y_{2i} & Z_{2i} \end{bmatrix} = 0$$

Supplementary files:

- https://www.youtube.com/watch?v=bMUN0ASDob4&t=329s
- https://www.youtube.com/watch?v=-y76vDBbl_8
- https://www.youtube.com/watch?v=Cl1Kne_WqPg&t=967s
- Elements of Photogrammetry With Applications in GIS by Paul R. Wolf, Bon A. Dewitt. Fourth Edition

Please don't use this presentation without getting a permeation from its original owner

Thanks

Dr.Eng. Hassan Mohamed